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I. Phys.: Condens. Matter 6 (1994) 9759-9772. Printed in the UK 
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t Instituto de Ffsica ‘Manuel Sandoval VaUa”, URiversidad Aut6noma de San Luis Potosi, 
78000 San Luis Potosi. SLP, Mexico 
$ Center for Materials Science and Engineering, University of Texas, Austin. TX 78712.1063, 
USA 

Received 19 April 1994 

Abstract. The phase transitions occurring in the king square antiferromagnet with fim- (31) and 
second- ( 1 2 )  nearest-neighbour interactions are studied using several mean-field approximations 
and for a wide range of R = 32/31, The largest approximation used corresponds to a ninepoint 
cluster approximation of the cluster variation method. In this w e ,  the hansition temperatures 
as a function of R are found to be in excellent agreement with those obtained by othex methods. 
The mean-field approximations predict a first-order transition in the range 0.5 c R 5 1.2. where 
the critical exponents associated with the paramagnetic to superantifemmagnetic transition have 
been reported to vary continuously with R. In that range of R, the mean-field approximations 
also predict a crossover W e e n  two distinct instabiliiy tempera-, or spinodals, taking 
place immediately below the first-order transition. Mean-field results are also given for the 
magnetization m, the specific heat C,. the magnetic susceptibility x 1  the staggered susceptibility 
x3, and the pair correlation function uij between i and j sites. 

1. Introduction 

Although the general properties of the king model on a square lattice with first- (51) and 
second- (Jz )  neighbour interactions are relatively well known, several recent studies suggest 
a non-universal critical behaviour for values of R = &/ J1 > 0.5. This particular behaviour 
has motivated studies based on finitesize scaling [I], perturbation theory [2], low- [3] and 
high- [4] temperature expansions, Monte Carlo simulations [Sa] and, more recently, the 
cluster variation method (CVM) 191 and the coherent anomaly method (CAM) [IO]. 

Since the thermodynamic properties of the model are independent of the sign of the 31, 
we restrict our discussion to the case of antiferromagnetic nearest-neighbour interactions, 
i.e. J1 < 0. For values of R = Jz/Jl  < 0.5 the ,.round state is the antiferromagnet (m), 
consisting of two ferromagnetic interpenetrating sublattices. For R > 0.5, the ground state 
is an arrangement with superantiferromagnetic order (SAF). This phase can be described by 
alternate single ferromagnetic rows of opposite oriented spins (see figure 1). Of special 
interest is the point R = 0.5 for which the system is highly degenerate and remains 
disordered at all finite temperatures. Recently it has been suggested that for R = 0.5 
the system behaves as the one-dimensional king chain [ll]. As it is shown below this 
behaviour is also observed in our calculations. 

It has been proposed that with the inclusion of second neighbour interactions, the 
system displays non-universal critical behaviour. For example, finite-size scaling studies 
[I] of Baxter’s model indicated that the critical exponents vary continuously not only in 
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the case where four-spin interactions are included but also in the case in which the Ising 
Hamiltonian contains only first- and second-neighbour pair interactions. A similar behaviour 
was obtained by perturbation theory 121 for systems with ferromagnetic .I,, antiferromagnetic 
JZ, and small values of -R-'. Furthermore, based on low-temperature series expansion 
studies, Wu [3] concluded that systems with R # 0 do not belong to the Ising class. Later 
Oitmaa [4] extended the analysis to high temperatures and found that universality breaks 
down for R > 0.5. More recently, Tanaka et al [IO] have used the CAM together with a 
simplified version of the CVM in order to estimate the critical exponents. However, the CVM 
predicts a first-order transition in the region where the exponents are seen to vary with R 
and, thus, the applicability of the CAM needs careful re-examination 191. 

The model has been also a subject of several studies by means of Monte Carlo 
simulations 15-81. In these studies the critical exponents also show a non-universal 
behaviour for R z 0.5, but the critical properties approach the two-dimensional king 
behaviour for large R. On the other hand, for R c 0.5 critical behaviour is Ising-like, i.e. 
only for a range of values of R > 0.5 do the exponents seem to be non-universal. 

The finite-temperature behaviour has been also studied in detail in the neighbourhood 
of R = 0.5. The possible existence of a multicritical point separating the ferromagnetic (or 
AF) and SAF states at finite temperatures at R = 0.5 was ruled out by exact calculations; a 
disorder line was obtained for R c 0.5 and shown to approach R = 0.5 only in the limit 
of T --t 0 [12]. More recently, it has been shown that the model can be mapped onto an 
Ising chain in a transverse field [ 111. This approximation is valid only for values of R close 
to 0.5 and, due to field inversion symmetry, the magnetic properties are symmetrical with 
respect to that value. The critical exponents obtained within this approach are of the Ising 
universality class. 

An additional feature of the King systems with ferromagnetic nearest neighbours and 
antiferromagnetic next-nearest-neighbour interactions, or with antiferromagnetic 51 in the 
range 0 < R c 0.5, is the behaviour of the spin-spin pair correlation functions. In this case, 
a disorder temperature TD has been defined in the paramagnetic state as the temperature at 
which the pair correlations for infinite distance change sign [13]. 

Here we describe the results of a systematic study of the Lenz-king model with first- and 
second-neighbour interactions using the CVM [14]. The Hamiltonian is solved in the square, 
five-, eight-, and nine-point approximations and the thermodynamic properties predicted by 
the mean field approximations are determined. We studied the phase transitions as a function 
of the interactions ratio R. As has been pointed out before, the transitions for values of 
0.5 < R c 1.2 are found to be of first order. However, as the cluster size increases and the 
level of the mean field approximation improves, the line of first-order transitions approaches 
two distinct critical lines (spinodals),~corresponding to two different instabilities, depending 
on the value of R. A crossover between these two instabilities is found to take place for 
R 0.60-0.65. 

Although the CVM by itself is not expected to resolve the issue of the true critical 
behaviour of the system, the method can be used in conjunction with the CAM to produce 
reliable estimates of critical exponents. Here we present a full characterization of the mean 
field CVM solutions, which is required for future applications of the CAM. Funhermore, 
the CVM provides accurate estimates of the transition temperatures and of the correlation 
spectrum near the critical point. In particular, in the nine-point approximation used here, 
one can calculate the pair correlations up to fifth neighbours. In section 2 we present briefly 
the model and method of solution. The results and conclusions are presented in section 3 
and a brief summary is given in section 4. 

J L Morh-Mpez et a1 



Phase transitions in Ising square antiferromagnets 9761 

2. Model and method 

The CVM provides a hierarchy of approximations to the configurational entropy of lattice 
systems. The simplest level of this method is equivalent to the Bragg-Williams (BW) or 
mean-field approximation [15]; in this approximation all the spin correlations are neglected. 
The next level of the CVM takes into account the spin correlation between first-neighbour 
pairs and is equivalent to the approximation developed independently by Bethe, Peierls and 
Guggenheim [16]. 

One can continue this series of approximations and consider larger and larger clusters 
with the consequent improvement in the description of the thermodynamic properties of the 
system. The exact solution would be achieved by considering an infinite cluster. However, 
as it is shown below, by using relatively small clusters that contain the topology of the lattice, 
one can obtain a reasonable description of thermodynamic properties. In the particular case 
of the square lattice, the smallest cluster that contains the information of the lattice topology 
is the square. The approximation based on the square is equivalent to the one worked out 
by Kramers and Wannier 1171. 

We solved the Hamiltonian using four, five, eight, and nine points as basic clusters. In 
the highest approximation, nine spin correlations, as well as the correlations in the smaller 
subclusters, are taken into account. The highest approximation used to study the Ising 
square lattice is the one based on nine-point clusters and it has been applied recently to the 
study of oxygen ordering in ceramic superconductors [18]. 

AF SAF 
Figure 1. The ground State antiferromagnetic arrangements on the square lattice for R = 
J ~ / J I  < 0.5 (antifemmagnetic) and R > 0.5 (superantifemmagnetic). (a) The various 
neighbours to site Zen in the nine-point cluster and (b) the four sublattices necessary to describe 
the magnetic order. 

The model considered is illustrated in figure 1. The AF and the SAF states at T = 0 
are shown in figure l(a) and (b), respectively. We assume a spin at each lattice site that 
interacts with its first and second neighbours. Thus the Hamiltonian describing the system 
is 
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where (i. j )  and (i, j)' refer to first and second neighbours, 0;: = f l ,  and H is a constant 
magnetic field. 

To describe the two antiferromagnetic phases, the square lattice has to be subdivided 
into four interpenetrating sublattices: a, 8, y .  and 6 (see figure 1). The magnetization at 
each sublattice is defined by 

where N is the total number of lattice sites. The magnetizations in the AF and SAF states 
are given in terms of the sublattice magnetizations by 

MAF = [Ma + M y  - ( M ,  + M d 1 / 4  

MSAF = [Mu + Ma - (Mg + My)1/4 

and the specific heat and the magnetic susceptibilities are given by 

where Hs is the staggered magnetic field. 
The equilibrium properties of the system at finite temperatures are obtained by using 

a generalization of the self-consistent mean-field approximation [ 191. This formulation is 
fully equivalent to the cluster variation method and allows us to treat large clusters in a 
simpler and more efficient computational manner. 

3. Results 

3.1. The case R = 0 
To illustrate the accuracy of our calculations we present first the results obtained in 
the absence of second-neighbour interactions. In figure Z(a) we show the temperature 
dependence of the magnetization as obtained in the Wannier-Garners approximation (four 
points), the nine-point approximation, and Yang's exact result. In this figure the temperature 
has been scaled to the critical temperature T, of each approximation. We notice that the 
nine-point approximation reproduces well the exact result over most of the temperature 
range. In figure 2(b) we present the results for the temperature dependence of the specific 
heat C, as obtained in the two cluster approximations and compare them with the exact 
result. 

It is worth noticing that the critical temperature (~BTJJ,) is 4, 2.42575 and 2.34629 
as obtained in the BW, square and nine-point approximations respectively; i.e. 76.3%. 6.9%, 
and 3% higher than the exact value (2.269 18). Thus the accuracy of the approximation 
increases relatively quickly with the cluster size. For further reference, and to compare with 
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Figure 2. (a) The temperamre dependence of the magnetization in a square ferromagnet as 
obtained in the square and nine-point approximations of the CVM, and the exact result The 
temperature is scaled ta the companding critical temperature. @)The temperature dependence 
of the spedfic heat for the same approximations and the exact result. 

the R > 0 cases, the temperature dependence of the order parameter (average magnetization), 
the specific heat C,, the magnetic susceptibility xm, and the staggered susceptibility xs. as 
obtained in the ninepoint cluster approximation, are presented in figure 3. 

In the nine-point approximation, the spin-spin correlations are defined up to fifth 
neighbours. In figure l(a) the ninepoint cluster is shown and the various neighbours to the 
site 0 are marked. In contrast to the SAF phase, in the AF state the primed and non-primed 
neighbours are equivalent. We show in figure 4 OUT results for the spin-spin correlations 
(uu),,~, ( j = l ,  ..., 5 )  above G. The correlations between first and fourth neighbours are 
antiferromagnetic (less than zero) and those between second, third, and fifth neighbour are 
ferromagnetic (greater than zero). They decay monotonically to zero as a function of the 
spin separation and/or the temperature. At high temperatures only the first-neighbour spin 
correlation has an appreciable value. 

3.2. The antiferromagnetic phase 0 -= R < 0.5 

With the inclusion of antiferromagnetic coupling between second neighbours, a competition 
is set up between the two interactions. Now the ferromagnetic correlations between second 
neighbours are in conflict with their interaction. For values of R < 0.5 the ground state 
is the antiferromagnet and, due to the competing interactions, the transition temperature is 
reduced as J2 increases. 

We show in figure 5 the results for the order parameter (average magnetization), the 
specific heat C,, the magnetic susceptibility xm and the staggered susceptibility xs for 
R = 0.2 and 0.4. The results for R = 0 are also included for comparison. One can notice 
that the effect of 52 is to increase the order near G (see figure 5(a)). Also observed is 
the respective narrowing and widening of the specific heat and of the staggered magnetic 
susceptibility. The phase transitions in this range of interactions are of second order. 

More interesting is the behaviour of the spin-Spin correlations above the critical 
temperature. It was shown [13] that for 0 4 R c 0.5, a disorder temperature TD can 
be defined in the paramagnetic state. This temperature is determined by the temperature 
dependence of the spin-spin correlations along the diagonal direction. In contrast to the 
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case of R = 0, and due to the antiferromagnetic coupling between second neighbours, the 
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_.. 5 

ferromagnetic short-range order in the diagonal direction changes sign at temperatures above 
Tc. The temperature at which the nth-neighbour pair correlation along the diagonal 
changes sign depends on the spin separation. It is observed that Td(1) z Td(2) > . . . > TD. 
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This behaviour is illustrated in figure 6, where the temperature dependence of the 
( U U ) ~ ~  for j = 1, ..., 5, and R = 0.4, is shown. From the five spin-spin correlations 
only those among first and third neighbours do not change sign. In figure 7 we show, in an 
enlarged scale, the results for ( U U ) ~ ~  with j = 2,4,5, in the temperature range where the 
spin-spin correlations change sign. Note that, in addition to the diagonal correlations, the 
correlation between off-diagonal neighbours (fourth) also changes from antiferromagnetic 
to ferromagnetic. We call that temperature Td@). The temperature TO is defined as the 
limit of Tde) for large n. Although we can only calculate three terms in the Td(") series, 
the trend towards a limit TD can be seen the inset to figure 7, which shows the disordering 
temperature along diagonal and non-diagonal directions (in units of the lattice constant). 

b 0 . 4  
-0.05 ' 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 7. Temperahre dependence of the spin-spin correlation function (go)oj for j = 2,4.5 
(see figure 1). and R = 0.4, in the range of temperarures where a change of sign takes place. 
The inset shows the separation dependence of the disordering t e m p e m .  

3.3. The paramagnetic state at R = 0.5 

Due to the degeneracy of the ground state the system remains disordered at all finite 
temperatures for R = 0.5. A recent domain wall analysis [ l l ]  in the neighbourhood of 
this point indicates that the system behaves as a onedimensional Ising chain. Our results 
in the nine-point approximation for C,, xm, and the inverse of the staggered susceptibilities 
of the SAF and the AF states are shown in figure S(a). The magnetic susceptibility is a very 
smooth function of T and becomes essentially zero for temperatures helow kBT/I 51 1 - 0.25. 
On the other hand, the staggered susceptibilities diverge at T = 0. The specific heat has 
negligible values up to kBT/IJ11 - 0.17 and then increases up to a maximum of 0.4359k~ 
at k ~ T / l  J I  I - 0.54. 

These properties are very similar to those of the Ising chain [ZO]. Our results for the 
specific heat of the square lattice are compared in figure 843) with the specific heat of the 
one-dimensional Ising chain (dashed line), given by 
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Figure 8. Results for the system with R = 0.5. (a) The temperatwe dependence of the specific 
heal C./!~B, the magnetic susceptibiliiy xm/IJ~I, and the inverse staggered susceptibility IJll/xS 
for the antifemmagnetic (AF) and supamtiferromagnetic (SAF) states. @) The tempffdture 
dependence of the spedfic heal C.: the present results are given by the solid line; the Monte 
carla mults [8] are denoted by 0; the exact solution for the one-dimensional Ising model is 
shown by the dashed line. 

where J is the coupling constant in the linear chain. The maximum of the specific heat 
occurs at the temperature TM given by the solution of the equation 

We note that our results for the onsef the maximum value, and the general shape of C, 
agree very well with the linear chain, but the temperature at which the maximum occurs 
is lower in our case. Since the solution of (6) is kBTM = 0.83355, it seems that the two- 
dimensional Ising system with R = 0.5 behaves as a linear Ising chain with an effective 
coupling constant of J = 0.64781 JI I .  

We plotted also the results obtained by Monte Carlo simulations (open circles) [61. 
One can further see that our results and those obtained by Monte Carlo simulations agree 
very well over a wide range of temperatures. A disagreement is noticeable only below 
kBT/IJ11 = 0.75. The maximum of the specific heat obtained by Mc is about 13% higher 
than the values predicted by the CVM. 

As mentioned, there were also some speculations about the existence of a multicritical 
point at finite T at which the ordered critical limes for the AF and SAP states would merge. 
This was ruled out by exact calculations of a disorder line for values of R c 0.5 [12]. Our 
results are in agreement with such behaviour. 

3.4. The superanti~ermmagnetic state R > 0.5 

For values of the interaction ratio above 0.5, the degeneracy is lifted and the ground state is 
the collinear or superantiferromagnetic state. Now the antiferromagnetic second neighbour 
interaction overcomes the one among the first neighbours and produces an ordered state, 
that compared to the AF or F phases, has a lower symmetry; i.e. the first-, fourth-, sixth-, 
etc neighbour sites are no longer all equivalent. This difference in symmetry produces a 
different behaviour above and below R = 0.5. 
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As reported previously 191, the phase transition between the paramagnetic and the SAF 
states was found to be of first order for a range of interactions 0.5 e R < Rc. Beyond the 
critical value R,, the mean-field transition is second order, displaying the expected Ising- 
like divergence of the staggered susceptibility. Furthermore, this behaviour was consistently 
observed for all cluster approximations investigated here. In the particular case of the nine- 
point approximation R, = 1.144. 
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Figure 9. (a) ?be difference between the first-order phase Wansition and the instability 
t e q "  as a function of the interactions, as obtained in the four., five-. eight-, and nine. 
point cluster approximations. (b) The discontinuity of the order parameter at T, as a function 
of the interamions in the various approximations used. 

In view of this unexpected behaviour, we conducted a detailed analysis of the instability, ' 
or critical temperature, which is predicted by mean field to occur below the first-order 
transition. This critical line, or spinodal, corresponds to a metastability limit of the 
paramagnetic phase, below which the paramagnetic state is unstable. In Ising systems, this 
mem-feld instability is with respect to fluctuations in the magnetic field, possibly staggered, 
and is marked by a divergence of the corresponding magnetic susceptibility. The difference 
between the first-order transition temperature and the highest instability temperature of the 
paramagnetic state is shown in figure 9(a) for the various approximations. As expected, 
this difference becomes smaller as the cluster approximation is improved and should, in the 
exact h i t ,  coincide with the l i e  of kst-order hansitions. Another unexpected behaviour 
of the mean-field approximation is observed near Ro is 0.60-0.65, at which the temperature 
difference in figure 9(a) shows a cusp. This cusp corresponds to a change, or crossover, in 
the instability mode of the paramagnetic phase. For values of R > Ro. the instability is with 
respect to fluctuations in the magnetic Eeld and the corresponding staggered susceptibility 
diverges, as expected of Ising systems. However, for 0.5 < R < Ro the instability is with 
respect to temperature fluctuations and the divergence takes place in the specific heat. 

The first-order nature of the transition is best seen through the discontinuity of the, 
magnetization at T,, as shown in figure9(b). As seen in the figure, close to R = 0.5 the order 
parameter jumps from values as high as 0.75 to zero. It is also apparent from figure 9@) 
that the discontinuity of the order parameter does not behave in a systematic manner as the 
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Figure 10. Temperature dependence of (a) the order parameter m (magnetization), (b) the 
specific heat C,/kB. (c) the magnetic susceptibility xm/l 31 1, and (d) the staggered susceptibility 
x./lJli for R = 0.0, 0.6, and 1.0. 

cluster approximation changes. Thus, our results preclude the use of extrapolation schemes 
in order to infer the presumably exact behaviour in the limit of large clusters. As mentioned 
in section 1, other extrapolation schemes, such as the coherent anomaly method (m), can 
be used to investigate critical behaviour in the exact limit and to estimate critical exponents 
[lo]. However, the straightforward application of the CAM is not warranted in view of the 
first-order nature of the mean-field transition as well as the instability crossover discussed 
above. Assuming that the first-order transition becomes second~order in the exact limit, the 
instability crossover predicted by our mean field results suggests two distinct sets of critical 
exponents, rather than the continuous change observed both by Monte Carlo and the m 
analysis based on a simplified version of the CVM [lo]. 

We show in figure 10 the results for the order parameter (average magnetization), the 
specific heat C,, the magnetic susceptibility xm, and the staggered susceptibility x.  for 
R = 0.6 and 1.0. The results for R = 0 are also included for comparison. One can 
recognize the first-order transition from these figures; in which the magnetic susceptibility 
shows a discontinuity at T,. 

The inequivalence of the two kinds of first- and fourth-neighbour site can be seen clearly 
in the temperature dependence of the spin-spin correlation. We plot in figure 11 the various 
spin-spin correlations for R = 0.6. In the ordered phase ( 0 ~ ) ~ ~  and ( U U ) ~ ~ ,  (i = 1,4), 
have opposite signs, and become equal in the disordered phase. For values of R close to 
0.5 this is achieved through the abrupt first-order phase transition. As the internal energy 
increases with R the first-order phase transition becomes weaker until, at the point Rc, the 
transition becomes of second order. 



9770 J L M o r h - U p e z  et al 

0 1 2 3 4  0 1 2 3 4  
TIT ,  TIT,  

1.0 , , I 1.0 ,\, 

T I T ,  T I T c  

m e  11. Tem~eratw dependence of the spin-spin wrrelation function (uu)oj for j = 1,l’ 
(a), j = 4.4’ (b), j = 3,3’ (c), and j = 2,s (d), and R = 0.6. 

3.5. The phase diagram 

We show in figure 12 the calculated phase diagram (solid line) in the Tc against R parameter 
space. In this figure we include for comparison the results obtained for T, by other methods: 
the values obtained with Monte Carlo simulations [6-8] are marked with open circles; 
those marked with triangles correspond to real space renormalization group results [21]; the 
crosses correspond to Monte Carlo renormalization group results [5]; and the open diamonds 
to series expansion results. One can see the excellent agreement between our results and 
those of Monte Carlo and series expansion studies. 

In the nine-point approximation the phase transition taking place in the range of 
interactions 0.5 < R < 1.144, is of first order. In figure 12, the bicritical point is denoted 
by a closed circle. We recall that the instability temperature occurs immediately below the 
line of first-order transitions. The difference between T, and the instability temperature in 
the nine-point approximation is smaller than 1.8 x 10-2[J11/kB. This cannot be resolved 
in the figure. The phase transitions taking place outside that range of interactions are of 
second order. 

Although, as mentioned, the crossover between two instability temperatures suggests 
two distinct critical behaviours for R > 0.5, the existence of a weak first-order transition 
cannot be entirely ruled out  Thus, a possible explanation of the non-universal critical 
behaviour for R > 0.5 observed, for example, in Monte Carlo simulations, could be due to 
the first-order character of the phase emsition. 
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Figure 12. Dependence of the transition temperalure k&/lJ~l on the interaction ratio 
R = 32/31. "he various phases are the paramagnetic (P), the antiferromagnetic (U), and the 
superantiferromagnetic (SAF). The solid tines are the present results; Monte Carlo results 16-81 
are denoted by 0; real space renormalization group results [211 are denoted by A; Monte Carlo 
renormalization group results [51 ax denoted by x; series expansion results [41 are denoted by 
0. The phase transition in the m g e  0.5 R < 1.144 is of fust order. The bicritical point is 
indicaled by 0. 

4. Summary 

We have presented a detailed study of the phase transitions occurring in the square king 
antiferromagnets. The Hamiltonian contained first- and second-neighbour interactions and 
was solved by means of the cluster variation method in various cluster approximations. The 
thermodynamic properties of the model were investigated for a large range of interactions. 
The antiferromagnetic phase occurring for 0 < R < 0.5 was studied in the ordered and the 
paramagnetic states. The disordering temperature TD produced by the competing interactions 
was clearly observed through the temperature behaviour of the spin-spin correlations among 
the various neighbours within the ninepoint cluster. Our calculation showed that the system 
with R = 0.5 behaves as a onedimensional king chain. The comparison of our results 
with the exact temperature dependence of the specific heat led us to the conclusion that this 
particular case shows one-dimensional behaviour with a reduced coupling constant. 

The mean-field approximation predicted that the phase wansitions taking place in the 
range 0.5 < R 5 1.2 are of first order. This behaviour was confirmed by solving the 
Hamiltonian using four-, five-, eight-, and nine-point clusters as units. Furthermore, these 
approximations also predict a crossover in the spinodal temperatures occurring immediately 
below the first-order transition. 
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